A Structure Tensor Based Voronoi Decomposition Technique For Optic Cup Segmentation

Kevin Raj^{1,2}, Harish Kumar^{1,2}, Subramanya Jois², Harsha S², and Chandra Sekhar Seelamantula²

¹Department of E $&$ E Engineering Manipal Academy of Higher Education Manipal, India

²Department of Electrical Engineering Indian Institute of Science Bangalore, India

kevinyitshak@gmail.com

September 23, 2019

Overview

- \triangleright The number of people with glaucoma worldwide is expected to rise from 64 million to 76 million by 2020 and 111 million by 2040.¹
- \triangleright Increase in intraocular pressure causes the retinal vessels to bend defines the optic cup boundary.
- B Ophthalmologists use **Vertical Cup Disk ratio (CDR)** to assess the severity of glaucoma.

Non-glaucomatous Glaucomatous

Figure 1. Examples of Non-glaucomatous and Glaucomatous conditions.

¹Tham, Y. C. et al. Ophthalmology. 2014.

- \triangleright Optic disc extraction based on expert annotation.
- \triangleright Landmark point (LP) detection using multi-scale Harris corner method.
- \triangleright A new Voronoi decomposition technique for removing irrelevant points.

Figure 2. Objective of the proposed method.

 \triangleright Consider an image $I(x, y)$, whose horizontal and vertical derivatives are *∂*^x I and *∂*^y I, respectively:

$$
\partial_x I = \mathbf{I}(x, y) * g_{\sigma_d}^{(1)}(x, y),
$$

\n
$$
\partial_y I = \mathbf{I}(x, y) * g_{\sigma_d}^{(2)}(x, y),
$$
\n(1)

where $*$ denotes the convolution operation, and $g^{(1)}_{\sigma_d}$ and $g^{(2)}_{\sigma_d}$ are the horizontal and vertical derivative-of-Gaussian (DoG) operators; *σ*^d is the standard deviation.

² Harris, C. and Stephens, M. Proceedings of Alvey Vision Conference, 1988.

 \triangleright The structure tensor **S** at each point is obtained as the outer product of the gradient vector with itself:

$$
\mathbf{S} = \begin{bmatrix} v * (\partial_x I)^2 & v * (\partial_x I \partial_y I) \\ v * (\partial_y I \partial_x I) & v * (\partial_y I)^2 \end{bmatrix},
$$
(2)

where v is a Gaussian filter with standard deviation $\sigma_a = 0.7 \sigma_d$.

 \triangleright The detection of landmark points $LP(x, y)$ is performed on the green channel of the fundus image.

 \triangleright The likelihood of a point being detected as a landmark point is determined using:

$$
R_p(x, y) = \det(\mathbf{S}) - k \operatorname{trace}^2(\mathbf{S}),\tag{3}
$$

where k is the trade-off factor and is typically set to 0*.*04.

 \triangleright In a multiscale framework, the set of landmark points is determined using [\(1\)](#page-4-0)-[\(3\)](#page-6-0) for $\sigma_{\bm{d}}{}^{i}=\alpha^{i-1}\,\beta$, where $i=1$ to 5; α is the step size, and *β* is the scale factor.

How to decide the relevant **Landmark points**?

We partition the optic disc into convex regions based on the Euclidean distance between the landmark points such that each region contains exactly one landmark point.

- \triangleright Consider a set S of co-planar points P_n with $n \geq 3$. $S = \{P_1, P_2, \cdots, P_n\}.$
- \triangleright Let $D(P_i, x)$ denote the Euclidean distance between P_i and a point x .
- \triangleright The perpendicular bisector of the line joining the points P_1 and P_2 is given by:

$$
B(P_1, P_2) = \{x | D(P_1, x) = D(P_2, x)\},\
$$

³Barber, C. B. et al. ACM Transactions on Mathematical Software (TOMS). 1996.

Voronoi Decomposition

 \triangleright Let $H(P_1, P_2)$ denote the half-plane containing the set of all points that are closer to P_1 than to P_2 :

$$
H(P_1, P_2) = \{x | D(P_1, x) < D(P_2, x)\}.
$$

 \triangleright The Voronoi cell containing P_1 is the intersection of several such half-planes and is specified as:

$$
VC(P_1, S) = \bigcap_{P_i \in S, i \neq 1} H(P_1, P_i),
$$

 \triangleright The Voronoi decomposition is the union of the closure of the Voronoi cells:

$$
V(S) = \bigcup_{P_i, P_j \in S, i \neq j} \overline{VC(P_1, S)} \cap \overline{VC(P_2, S)}.
$$

where the overbar denotes set closure.

Voronoi Decomposition

Figure 3. Voronoi partitioning of the space.

Voronoi Partitioning of the Optic Disc

 (a) (b) (c)

Figure 4. Voronoi partitioning using (a) the initial landmark points; (b) after removing the landmark points on the OD boundary; and (c) different levels of landmark points; red: 1st, green: 2nd, blue: 3rd, cyan: 4th, and corresponding circle fits.

- \triangleright Selection of points that constitute the relevant kinks from the identified ones is based on the intensity and the area of the pallor.
- \triangleright We consider the brightest pixel group B_n within the OD obtained from a 4-level Otsu thresholding 4 .
- \triangleright If **B**_p constitutes to more than 50% of the OD area, then we consider 2nd level points as the relevant kinks, else the 4th level points are considered as the relevant ones.
- \triangleright Finally, a circle is fit to the relevant landmark points using Pratt's technique⁵ resulting in an accurate OC segmentation.

⁴Otsu, N. IEEE Transactions on Systems, Man, and Cybernetics. 1979.

⁵Pratt, V. ACM SIGGRAPH Computer Graphics. 1987.

Results

Figure 5. Row 1: Segmented OD region, Row 2: OC segmentation using the proposed technique, Row 3: Comparison of the algorithm output (shown in red), the expert annotations (shown in green) & the region shown in yellow indicates overlap.

Table 1. Performance of the proposed OC segmentation algorithm.

Database (# of images) $\vert S_e \vert S_p \vert$ Acc $\vert J_i \vert D_c$			
Drishti-GS (101)	0.87 0.95 0.93 0.7 0.82		
MESSIDOR (90)	0.83 0.99 0.99 0.69 0.80		
Average (191)	0.85 0.97 0.96 0.67 0.81		

¹ S_e - sensitivity; S_p - specificity; Acc - accuracy; J_i - Jaccard index and D_c - Dice coefficient.

²
$$
S_e = \frac{TP}{TP+FN}
$$
; $S_p = \frac{TN}{TN+FP}$; $Acc = \frac{TP+TN}{TP+TN+FP+FN}$

$$
D_c = \frac{2TP}{2TP + FP + FN}; J_i = \frac{D_i}{2 - D_i}
$$

Results

Table 2. Performance comparison with the state-of-the-art techniques.

⁶ Joshi, G. D. et al. *IEEE Transactions on Biomedical Engineering*. 2012.

⁷Chakravarty, A. and Sivaswamy, J. MICCAI. 2014.

⁸ Zilly, J. G. et al. Computerized Medical Imaging and Graphics. 2017.

⁹ Sevastopolsky, A. Pattern Recognition and Image Analysis, 2017.

 $10ZiHy$, J. G. et al. Proceedings of International Workshop on Machine Learning in Medical Imaging. 2015.

- \triangleright A novel technique for automatic segmentation of the OC region in retinal fundus images is proposed.
- \triangleright A method for removing the redundant landmark points is proposed.
- \triangleright The proposed technique relies on structural properties namely, the landmark points found in retinal vasculature to determine the contour of the OC.
- \triangleright IEEE SPS travel grant.
- \triangleright This work was supported by the Ministry of Human Resource Development under the IMPRINT India Initiative (Domain: Healthcare; Project No.: 6013).
- \triangleright We would like to thank Dr. Yogish S Kamath and Dr. Rajani Jampala from Kasturba Medical College (KMC), MAHE, Manipal, India for providing manual annotations of the optic cup region.

Thank you