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ABSTRACT
Vessels are regions of prominent interest in retinal fundus
images. Classification of vessels into arteries and veins can
be used to assess the oxygen saturation level, which is one
of the indicators for the risk of stroke, condition of diabetic
retinopathy, and hypertension. In practice, dual-wavelength
images are obtained to emphasize arteries and veins sepa-
rately. In this paper, we propose an automated technique for
the classification of arteries and veins from single-wavelength
fundus images using convolutional neural networks employ-
ing the ResNet-50 backbone and squeeze-excite blocks. We
formulate the artery-vein identification problem as a three-
class classification problem where each pixel is labeled as be-
longing to an artery, vein, or the background. The proposed
method is trained on publicly available fundus image datasets,
namely RITE, LES-AV, IOSTAR, and cross-validated on the
HRF dataset. The standard performance metrics, such as aver-
age sensitivity, specificity, accuracy, and area under the curve
for the datasets mentioned above, are 92.8%, 93.4%, 93.4%,
and 97.5%, respectively, which are superior to the state-of-
the-art methods.

Index Terms— Artery-vein (A/V), classification, convo-
lutional neural network (CNN), fundus images.

1. INTRODUCTION

Retinal oximetry is a non-invasive imaging technique used
to measure the retinal oxygen saturation level using multi-
wavelength fundus images, which is used to address the
problem of retinal vessel occlusion, diabetic retinopathy,
and hypertension. The above mentioned pathologies alter
the topography of blood vessels in the retina and lower the
arteriolar-to-venular ratio (AVR), indicating that the patient
is suffering from the risk of hypertension and cardiovascu-
lar diseases [1]. This methodology is expensive and time-
consuming compared to traditional fundus imaging in which
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Fig. 1. [Color online ] (a) A color fundus image; (b) Manual
annotation: red indicates artery, blue indicates vein, green in-
dicates overlapping of arteries and veins, and white indicates
neither artery nor vein.

one captures a single-wavelength fundus image. Hence, there
is a need to investigate the possibility of artery-vein (A/V)
classification using single-wavelength fundus image (Fig. 1).
There have been numerous image processing techniques as
well as deep learning approaches reported in the literature
that address A/V classification. On the image processing
front, Behdad et al. extracted the graph of vasculature and
used intensity features to identify whether the vessel pixel is
an artery or a vein [2]. Similarly, in [3], [4], the authors used
a graph of the vasculature to estimate the topological and
geometrical features to improve A/V classification perfor-
mance. Qazaleh et al.’s methodology consists of three parts:
pre-processing, feature extraction along the vessel center-
line, and post-processing techniques for the classification of
vessels into arteries or veins [5]. On the deep learning front,
A/V classification is done with the help of features extracted
using a fully connected convolutional neural network [6], [7],
and uncertainty-based classification using U-Net architecture
proposed by [8]. Recently, Zhang et al. proposed a cascaded
refined U-net based A/V classification using dual-modal
fundus images consisting of two monochromatic images cap-
tured at wavelengths 570 and 610 nm [9].
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Fig. 2. [Color online ] Proposed AV-Net for artery/vein classification.

1.1. Our Contribution

Our main contribution in this paper is a novel CNN archi-
tecture for A/V classification using ResNet-50 backbone and
Squeeze-Excite blocks. In contrast to the other methods, a
segmented vasculature map is not required as the input to the
A/V classification network. The network only requires a sin-
gle wavelength, color fundus image as the input. The pro-
posed CNN is extensively validated on three publicly avail-
able datasets and also cross-validated on an unseen dataset.
The results indicate the superior generalization capability of
the network.

2. PROPOSED METHOD

The proposed technique performs pixel-level classification of
the fundus image into arteries/veins without the need for pre-
processing of fundus images or a segmented vasculature map.
As the depth of the network increases, the network is prone
to vanishing/exploding gradients. To address this problem,
He et al. introduced residual connections [10]. We propose a
novel network named AV-Net by combining the low-level to
high-level features extracted from the residual connections of
ResNet-50. We have incorporated Squeeze-Excite networks
[11] and recently developed rectified Adam optimizer [12] to
optimize the proposed architecture.

2.1. Artery-Vein Net (AV-Net)

We use ResNet-50 [10], as the backbone network to per-
form feature extraction. The ResNet-50 is pre-trained on
the ImageNet dataset [13]. The residual blocks separate the
ResNet-50 architecture into 16 sub-blocks, each consisting
of several convolutions, activation, and batch normalization
operations. We concatenate the features extracted from the

Table 1. Overview of datasets used for A/V classification.
Dataset # images Resolution

RITE [14] 40 565× 584
LES-AV [15] 22 1444× 1620
IOSTAR [16] 30 1024× 1024

HRF [17] 45 3504× 2336

residual blocks having the same filter dimensions. The ex-
tracted features are upsampled to match the output dimension
of 512× 512. The upsampled features are then concatenated
and passed to squeeze and excite blocks, to explicitly model
the inter-dependencies between various channels. A block
diagram of the proposed architecture is shown in Fig. 2.

2.2. Training

The AV-Net is trained for 30 epochs with a batch size of two
images in order to minimize the three-class categorical cross-
entropy (CCE) loss function:

CCE = −
2∑

c=0

yc log

(
eŷc∑2
i=0 e

ŷi

)
, (1)

where yc indicates the correct label and ŷc indicates the pre-
dicted probability of a pixel being an artery, vein, or the back-
ground class (c, i ∈ [0, 2]), respectively. The loss function
is optimized by using rectified Adam [12], which uses warm-
up, an initial period of training with a much lower learning
rate so that adaptive optimizers can offset excessive variance
when dealing with limited training data. The optimal learning
rate 7e− 3 for the optimizer is obtained using a grid search.
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Fig. 3. [Color online ] Extraction of artery-vein vasculature using AV-Net. (a1)-(a4): Fundus images; (b1)-(b4): Results on
images from (b1) RITE, (b2) LES-AV, (b3) IOSTAR, and (b4) HRF datasets (blue indicates vein and red indicates artery).

3. EXPERIMENTAL VALIDATION

The AV-Net is trained on three different publicly available
datasets namely: RITE [14], IOSTAR [16], LES-AV [15], and
cross-validated on HRF [17]. These datasets contain images
of different contrast, brightness, and illumination, as shown
in Fig. 3. An overview of the datasets mentioned above
is given in Table 1. Unlike the other datasets, INSPIRE [2]
provides only center-line annotation. Hence, we have opted
not to include INSPIRE in our study. In the case of RITE
and HRF datasets, ground truth was labeled as neither an
artery nor a vein inside the optic disc region and in cross-
ings between vessels. We have not considered these miscel-
laneous cases to enable objective comparisons with the pre-
viously proposed methods, which considered A/V classifica-
tion as a binary classification problem, i.e., classifying into
either an artery or a vein. A total of 92 images obtained
from RITE, IOSTAR, and LES-AV datasets are distributed
randomly into training and validation sets (70% & 30%, re-
spectively). Data augmentation techniques such as rotation,
shearing, horizontal, and vertical flip have been employed to
increase the size of the training data. Finally, the input im-
ages are resized to 1024 × 1024 and fed as the input to the
network without any pre-processing. Manual annotations of
A/V are resized to 512 × 512 to match the output dimen-
sions of the network. Metrics such as sensitivity (Sn), speci-
ficity (Sp), accuracy (Ac), and area under the curve (AUC)
are reported for the combined train-test set in Table 2. To as-
sess the generalization of the AV-Net, we have also reported
cross-validation scores on the HRF dataset. ROC analysis
is performed separately for both artery and vein, to choose
the optimal threshold value that maximizes the Youden index
J = Sn + Sp − 1. Techniques [8, 18, 19] generate pixel-wise

Table 2. Comparison of AV-Net with state-of-the-art tech-
niques.

Dataset Method
Vessel map

required as input Sn Sp Ac AUC

HRF FCN [18] 3 - - 0.965 -
AV-NET 7 0.907 0.915 0.915 0.965

IOSTAR AV-NET 7 0.925 0.932 0.932 0.975
LES-AV UV-AV [8] 7 0.88 0.85 0.86 0.94

AV-NET 7 0.944 0.946 0.946 0.98
RITE FCN [18] 7 - - 0.938 -

UV-AV [8] 7 0.89 0.9 0.89 0.95
DS-UNET [19] 7 0.923 0.911 0.917 -
DFS-search + RF [20] 3 0.94 0.939 0.939 -
GrBs [2] 3 0.9 0.84 0.85 -
TpEs [21] 3 0.917 0.917 0.92 -
GenS [22] 3 0.71 0.74 0.72 0.78
AV-NET 7 0.937 0.943 0.943 0.98

A/V classification map and do not require a segmented vas-
culature map, whereas [20–22] require a binary vessel map as
an input and it is obtained by their proposed techniques. An
extensive comparison of the proposed technique with state-
of-the-art techniques is shown in Table 2.

4. CONCLUSION

We have proposed a novel deep learning architecture named
AV-Net for artery/vein classification from a single wavelength
fundus image using low-level to high-level features extracted
from residual connections of ResNet-50. In contrast with
previously proposed techniques, AV-Net does not require a
segmented vasculature map as the input. The network is
extensively validated on publicly available datasets RITE,
IOSTAR, LES-AV, and cross-validated on HRF, indicating
efficacy and generalization capability of AV-Net.
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