	Challenges		Conclusions

AUTOMATIC CLASSIFICATION OF ARTERY/VEIN FROM SINGLE WAVELENGTH FUNDUS IMAGES

P. Kevin Raj¹, Aniketh Manjunath², J. R. Harish Kumar^{1,3} and Chandra Sekhar Seelamantula¹ css@iisc.ac.in

¹Department of Electrical Engineering, Indian Institute of Science, Bangalore, India

²Department of Computer Science, USC Viterbi School of Engineering, California, USA USC Viterbi

³Department of E & E Engineering, Manipal Academy of Higher Education, Manipal, India (m) MANIPAL

April 6, 2020

IEEE International Symposium on Biomedical Imaging 2020

		Challenges 0	Proposed Method	Conclusions 000
Contents	S			

Challenges

Proposed Method

5 Validation Results

6 Conclusions

Problem ●000	Challenges 0	Proposed Method	Conclusions 000
Problem			

- Vessels are regions of prominent interest in retinal fundus images.
- Classification of vessels into arteries and veins is required to assess the oxygen saturation level.
- It is also used to analyze various retinal pathologies, which alter the topography of blood vessels.¹

Figure 1: A retinal fundus image.

¹Ikram et al., Investigative Ophthalmology & Visual Science, 2004.

Problem	Challenges		Conclusions
0000			

- In the case of central retinal venules and arterial occlusions, the oxygen saturation has been found to be lower².
- ► A deficit of oxygen in the retina as a result of blood supply deprivation is linked to diabetic retinopathy³.
- Oxygen saturation level is generally measured using multi-wavelength fundus images.

Figure 2: Retinal oximetry map.

²Eliasdottir et al., *Graefe's Archive for Clinical and Experimental Ophthalmology*, 2015.

³Hardarson et al., *British Journal of Ophthalmology*, 2012.

Topcon Fundus Camera with Oxymap T1 Oxygen saturat Analyzer

 $SatO_2$ level Oxygen saturation represented by a pseudocolor map

50%

25%

0%

Figure 3: A dual-wavelength fundus imaging setup.

100%

75%

 Problem
 Prior Art
 Challenges
 Proposed Method
 Validation Results
 Conclusions

 000●
 00
 000
 000
 000
 000
 000

Question: Could we perform artery-vein (A/V) classification using a single-wavelength fundus image?

Figure 4: (a) A color fundus image; (b) Manual annotation: red indicates artery, blue indicates vein, green indicates crossing-over of arteries and veins, and white indicates neither artery nor vein.

		Prior Art ●0	Challenges O	Proposed Method		Conclusions 000
--	--	-----------------	-----------------	-----------------	--	--------------------

Prior Art: Image Processing Techniques

- Dashtbozorg et al.⁴ used intensity features for A/V classification by extracting the vasculature graph.
- Martinez-Perez et al.⁵ improved the performance by combining topological and geometrical features with intensity features.

⁴Dashtbozorg et al., *IEEE Transactions on Image Processing*, 2013.

⁵Martinez-Perez et al., *IEEE Transactions on Biomedical Engineering*, 2002.

Prior Art 0●	Challenges O	Proposed Method	Conclusions 000

Prior Art: Deep Learning Techniques

- ► Meyer et al.⁶ and Welikala et al.⁷ used a fully-connected convolutional neural network for A/V classification.
- Galdran et al.⁸ formulated the A/V classification task as a four-class segmentation problem to classify pixels into background, artery, vein, or uncertain classes.
- Zhang et al.⁹ used dual-wavelength fundus images consisting of two monochromatic images captured at wavelengths 570 nm and 610 nm.

⁶Meyer et al., Proc. Int. Conf. on Image Analysis and Recognition, 2018.
⁷Welikala et al., Computers in Biology and Medicine, 2017.
⁸Galdran et al., Proc. IEEE Int. Symp. on Biomed. Imag., 2019.
⁹Zhang et al., IEEE Access, 2019.

		Challenges •	Proposed Method	Conclusions 000
Challeng	jes			

- Visually hard to distinguish between arteries and veins given a single wavelength retinal fundus image.
- Lack of large, publicly available datasets with A/V annotations for training a deep neural network.
- Requires complex pre-processing and post-processing steps to achieve higher classification accuracy.

		Challenges O	Proposed Method ●00	Conclusions
Propose	d Metho	d		

- We use ResNet-50 trained on ImageNet¹⁰ as the backbone network to perform feature extraction.
- We concatenate the features extracted from the residual blocks having the same filter dimensions.
- The extracted features are upsampled and passed through squeeze-and-excite blocks.

¹⁰Deng et al., *Proc. IEEE Int. Conf. on CVPR*. 2009.

	Challenges O	Proposed Method 0●0	Conclusions
AV-Net			

Figure 5: Proposed Artery/Vein Net.

		Challenges O	Proposed Method 00●	Conclusions 000
Training	the AV/ N	lot		

- ► Three classes: artery, vein, neither.
- ▶ Minimize the three-class categorical cross-entropy (CCE) loss:

$$CCE = -\sum_{c=0}^{2} y_c \log\left(\frac{e^{\hat{y}_c}}{\sum_{i=0}^{2} e^{\hat{y}_i}}\right), \qquad (1)$$

where y_c indicates the correct label and \hat{y}_c indicates the predicted probability of a pixel (c = 0, 1, 2).

- The loss function is optimized by using rectified Adam¹¹, which uses warm-up.
- ► The learning rate 7e 3 for the optimizer was obtained using a grid search.

¹¹Liu et al., arXiv preprint arXiv:1908.03265, 2019.

		Challenges O	Proposed Method 000	Validation Results ●0000000	Conclusions
Experim	ental Vali	dation			

- The AV-Net is trained on three publicly available datasets namely RITE¹², IOSTAR¹³, LES-AV¹⁴, and cross-validated on HRF¹⁵.
- These datasets contain images of different contrast, brightness, and illumination.

¹³Sureshjani et al., *Proc. Int. Conf. on Image Analysis and Recognition*, 2015.

¹⁴Orlando et al., *Proc. Int. Conf. on MICCAI*. 2018.

¹⁵Odstrcilik et al., *IET Image Processing*, 2013.

¹²Hu et al., Proc. Int. Conf. on MICCAI. 2013.

ProblemPrior ArtChallengesProposed MethodValidation ResultsConclusions000000000000000000

Datasets Used for A/V Classification

Dataset	# images	Resolution
RITE	40	565 imes 584
LES-AV	22	1444 imes 1620
IOSTAR	30	1024 imes 1024
HRF	45	3504 × 2336

	Challenges O	Proposed Method	Validation Results 00●00000	Conclusions 000

Crossings between vessels are labelled as neither an artery nor a vein as shown below.

Figure 6: Ground-truth from HRF (left) and RITE (right) datasets. Green: crossing of vessels; and white: uncertainty of vessels being an artery or a vein.

We have not considered vessel crossings and vessel uncertainty cases to enable a fair comparison with the previously proposed methods.

	Challenges O	Proposed Method	Validation Results	Conclusions

Training and Validation Data

- A total of 92 images obtained from RITE, IOSTAR, and LES-AV datasets were sorted randomly into training and validation sets (70% & 30%, respectively).
- ► Data augmentation¹⁶ techniques involving
 - rotation,
 - shearing,
 - Interpretended in the second secon
 - vertical flip

have been employed.

¹⁶Shorten et al., *Journal of Big Data*, 2019.

	Challenges O	Proposed Method	Validation Results	Conclusions 000

A/V Classification Results

Figure 7: Artery-vein vasculature using AV-Net. (blue: vein; red: artery).

	Challenges O	Proposed Method	Validation Results	Conclusions

A/V Classification Results

Figure 8: Artery-vein vasculature using AV-Net. (blue: vein; red: artery).

		Challenges 0	Proposed Method 000	Validation Results 000000●0	Conclusions 000
Perform	anco Motr	ics			

We employ the standard metrics for performance comparison:

• Sensitivity
$$(S_n) = \frac{TP}{TP+FN}$$

• Specificity
$$(S_p) = \frac{TN}{TN+FP}$$

• Accuracy
$$(A_c) = \frac{TP+TN}{TP+TN+FP+FN}$$

- $\mathsf{TP}=\mathsf{True}\;\mathsf{Positive}$
- TN = True Negative
- FP = False Positive
- FN = False Negative

		Challenges		Validation Results	Conclusions
0000	00	0	000	0000000	000

Performance Comparison

Dataset	Method	Vessel map required as input	Sn	Sp	A _c	AUC
HRF	FCN ¹⁷	1	-	-	0.965	-
	AV-NET	X	0.907	0.915	0.915	0.965
IOSTAR	AV-NET	X	0.925	0.932	0.932	0.975
LES-AV	UV-AV ¹⁸	X	0.88	0.85	0.86	0.94
	AV-NET	×	0.944	0.946	0.946	0.98
RITE	FCN	X	-	-	0.938	-
	UV-AV	X	0.89	0.9	0.89	0.95
	DS-UNET ¹⁹	X	0.923	0.911	0.917	-
	DFS-search $+ RF^{20}$	1	0.94	0.939	0.939	-
	GrBs ²¹	1	0.9	0.84	0.85	-
	TpEs ²²	1	0.917	0.917	0.92	-
	GenS ²³	1	0.71	0.74	0.72	0.78
	AV-NET	×	0.937	0.943	0.943	0.98

¹⁷Hemelings et al., Computerized Medical Imaging and Graphics, 2019.

¹⁸Galdran et al., Proc. IEEE Int. Symp. on Biomed. Imag., 2019.

¹⁹Wang et al., Proc. Int. Conf. on Biomedical Signal and Image Processing, 2019.

²⁰Srinidhi et al., IEEE Transactions on Image Processing, 2019.

²¹Dashtbozorg et al., IEEE Transactions on Image Processing, 2013.

²²Estrada et al., IEEE Transactions on Medical Imaging, 2015.

²³Huang et al., Computer Methods and Programs in Biomedicine, 2018.

		Challenges 0	Proposed Method 000	Conclusions ●00
Conclus	ions			

- We proposed a novel deep learning architecture named AV-Net for artery/vein classification.
- We used low-level to high-level features extracted from residual connections of ResNet-50 pre-trained on the ImageNet database.
- In contrast with previously proposed techniques, AV-Net does not require a segmented vasculature map as the input.
- The network has been validated on publicly available datasets RITE, IOSTAR, LES-AV, and cross-validated on HRF. The validations indicate the efficacy and generalization capability of the AV-Net.

	Challenges O	Proposed Method	Conclusions

Acknowledgement

Funding Agencies:

- IMPRINT project (No. 6013) funded by the Ministry of Human Resource Development and Indian Council for Medical Research.
- ► SERB-TARE Fellowship.

		Challenges			Conclusions
0000	00	0	000	0000000	000

Thank you