

AUTOMATIC CLASSIFICATION OF ARTERY/VEIN FROM SINGLE WAVELENGTH FUNDUS IMAGES

P. Kevin Raj¹, Aniketh Manjunath², J. R. Harish Kumar^{1,3} and Chandra Sekhar Seelamantula 1 <css@iisc.ac.in>

¹Department of Electrical Engineering, Indian Institute of Science, Bangalore, India

²Department of Computer Science, USC Viterbi School of Engineering, California, USA **IISCViterbi**

 3 Department of E & E Engineering, Manipal Academy of Higher Education, Manipal, India $\frac{1}{100}$ MANIPAL

April 6, 2020

IEEE International Symposium on Biomedical Imaging 2020

Contents

[Challenges](#page-8-0)

[Proposed Method](#page-9-0)

[Validation Results](#page-12-0)

[Conclusions](#page-20-0)

- \triangleright Vessels are regions of prominent interest in retinal fundus images.
	- \blacktriangleright Classification of vessels into arteries and veins is required to assess the oxygen saturation level.
	- \blacktriangleright It is also used to analyze various retinal pathologies, which alter the topography of blood vessels.¹

Figure 1: A retinal fundus image.

¹lkram et al., *Investigative Ophthalmology & Visual Science*, 2004.

- \blacktriangleright In the case of central retinal venules and arterial occlusions, the oxygen saturation has been found to be lower 2 .
- \triangleright A deficit of oxygen in the retina as a result of blood supply deprivation is linked to diabetic retinopathy 3 .
- \triangleright Oxygen saturation level is generally measured using multi-wavelength fundus images.

Figure 2: Retinal oximetry map.

²Eliasdottir et al., Graefe's Archive for Clinical and Experimental Ophthalmology, 2015.

 3 Hardarson et al., British Journal of Ophthalmology, 2012.

Figure 3: A dual-wavelength fundus imaging setup.

Topcon Fundus Camera with Oxymap T1

Analyzer

100%

75%

50%

 $SatO₂$ level

Oxygen saturation represented by a pseudocolor map

25%

 $0%$

[Problem](#page-2-0) [Prior Art](#page-6-0) [Challenges](#page-8-0) [Proposed Method](#page-9-0) [Validation Results](#page-12-0) [Conclusions](#page-20-0)

 \triangleright Question: Could we perform artery-vein (A/V) classification using a single-wavelength fundus image?

Figure 4: (a) A color fundus image; (b) Manual annotation: red indicates artery, blue indicates vein, green indicates crossing-over of arteries and veins, and white indicates neither artery nor vein.

Prior Art: Image Processing Techniques

- \blacktriangleright Dashtbozorg et al.⁴ used intensity features for A/V classification by extracting the vasculature graph.
- \blacktriangleright Martinez-Perez et al.⁵ improved the performance by combining topological and geometrical features with intensity features.

⁴Dashtbozorg et al., IEEE Transactions on Image Processing, 2013.

⁵Martinez-Perez et al., IEEE Transactions on Biomedical Engineering, 2002.

[Problem](#page-2-0) [Prior Art](#page-6-0) [Challenges](#page-8-0) [Proposed Method](#page-9-0) [Validation Results](#page-12-0) [Conclusions](#page-20-0) \circ 000 00000000

Prior Art: Deep Learning Techniques

- \blacktriangleright Meyer et al.⁶ and Welikala et al.⁷ used a fully-connected convolutional neural network for A/V classification.
- Galdran et al.⁸ formulated the A/V classification task as a four-class segmentation problem to classify pixels into background, artery, vein, or uncertain classes.
- \blacktriangleright Zhang et al.⁹ used dual-wavelength fundus images consisting of two monochromatic images captured at wavelengths 570 nm and 610 nm.

 6 Meyer et al., Proc. Int. Conf. on Image Analysis and Recognition, 2018. ⁷Welikala et al., Computers in Biology and Medicine, 2017. ⁸Galdran et al., Proc. IEEE Int. Symp. on Biomed. Imag., 2019. ⁹Zhang et al., IEEE Access, 2019.

- \triangleright Visually hard to distinguish between arteries and veins given a single wavelength retinal fundus image.
- \blacktriangleright Lack of large, publicly available datasets with A/V annotations for training a deep neural network.
- \blacktriangleright Requires complex pre-processing and post-processing steps to achieve higher classification accuracy.

- \blacktriangleright We use ResNet-50 trained on ImageNet¹⁰ as the backbone network to perform feature extraction.
- \triangleright We concatenate the features extracted from the residual blocks having the same filter dimensions.
- \blacktriangleright The extracted features are upsampled and passed through squeeze-and-excite blocks.

¹⁰Deng et al., Proc. IEEE Int. Conf. on CVPR. 2009.

AV-Net

Figure 5: Proposed Artery/Vein Net.

- \blacktriangleright Three classes: artery, vein, neither.
- \blacktriangleright Minimize the three-class categorical cross-entropy (\mathcal{CCE}) loss:

$$
\mathcal{CCE} = -\sum_{c=0}^{2} y_c \log \left(\frac{e^{\hat{y}_c}}{\sum_{i=0}^{2} e^{\hat{y}_i}} \right), \tag{1}
$$

where y_c indicates the correct label and \hat{y}_c indicates the predicted probability of a pixel $(c = 0, 1, 2)$.

- \blacktriangleright The loss function is optimized by using rectified Adam¹¹, which uses warm-up.
- \blacktriangleright The learning rate 7e 3 for the optimizer was obtained using a grid search.

 11 Liu et al., arXiv preprint arXiv:1908.03265, 2019.

Experimental Validation

- \blacktriangleright The AV-Net is trained on three publicly available datasets namely $RITE^{12}$, IOSTA R^{13} , LES-AV¹⁴, and cross-validated on HRF^{15} .
- \blacktriangleright These datasets contain images of different contrast, brightness, and illumination.

 13 Sureshjani et al., Proc. Int. Conf. on Image Analysis and Recognition, 2015.

¹⁴Orlando et al., Proc. Int. Conf. on MICCAI. 2018.

 15 Odstrcilik et al., IET Image Processing, 2013.

 12 Hu et al., Proc. Int. Conf. on MICCAI. 2013.

[Problem](#page-2-0) [Prior Art](#page-6-0) [Challenges](#page-8-0) [Proposed Method](#page-9-0) [Validation Results](#page-12-0) [Conclusions](#page-20-0)
0000 000 000 000 000 00000000 000

Datasets Used for A/V Classification

 \triangleright Crossings between vessels are labelled as neither an artery nor a vein as shown below.

Figure 6: Ground-truth from HRF (left) and RITE (right) datasets. Green: crossing of vessels; and white: uncertainty of vessels being an artery or a vein.

 \triangleright We have not considered vessel crossings and vessel uncertainty cases to enable a fair comparison with the previously proposed methods.

Training and Validation Data

- \blacktriangleright A total of 92 images obtained from RITE, IOSTAR, and LES-AV datasets were sorted randomly into training and validation sets (70% & 30%, respectively).
- \blacktriangleright Data augmentation¹⁶ techniques involving
	- **O** rotation.
	- ² shearing,
	- horizontal flip, and
	- **4** vertical flip

have been employed.

¹⁶Shorten et al., Journal of Big Data, 2019.

A/V Classification Results

Figure 7: Artery-vein vasculature using AV-Net. (blue: vein; red: artery).

A/V Classification Results

Figure 8: Artery-vein vasculature using AV-Net. (blue: vein; red: artery).

We employ the standard metrics for performance comparison:

$$
\blacktriangleright \text{ Sensitivity } (S_n) = \frac{TP}{TP + FN}
$$

$$
\blacktriangleright \text{ Specificity} (S_p) = \frac{TN}{TN + FP}
$$

$$
\blacktriangleright \text{ Accuracy } (A_c) = \frac{TP + TN}{TP + TN + FP + FN}
$$

- $TP = True Positive$
- $TN = True$ Negative
- $FP = False Positive$
- $FN = False$ Negative

Performance Comparison

17 Hemelings et al., Computerized Medical Imaging and Graphics, 2019.

18 Galdran et al., Proc. IEEE Int. Symp. on Biomed. Imag., 2019.

¹⁹ Wang et al., Proc. Int. Conf. on Biomedical Signal and Image Processing, 2019.

²⁰Srinidhi et al., IEEE Transactions on Image Processing, 2019.

²¹Dashtbozorg et al., IEEE Transactions on Image Processing, 2013.

 22 Estrada et al., IEEE Transactions on Medical Imaging, 2015.

²³ Huang et al., Computer Methods and Programs in Biomedicine, 2018.

- ▶ We proposed a novel deep learning architecture named AV-Net for artery/vein classification.
- \blacktriangleright We used low-level to high-level features extracted from residual connections of ResNet-50 pre-trained on the ImageNet database.
- \blacktriangleright In contrast with previously proposed techniques, AV-Net does not require a segmented vasculature map as the input.
- \blacktriangleright The network has been validated on publicly available datasets RITE, IOSTAR, LES-AV, and cross-validated on HRF. The validations indicate the efficacy and generalization capability of the AV-Net.

Acknowledgement

Funding Agencies:

- ▶ IMPRINT project (No. 6013) funded by the Ministry of Human Resource Development and Indian Council for Medical Research.
- ▶ SERB-TARE Fellowship.

Thank you