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Abstract. The main challenge in few-shot learning is the translation
of latent representations learned from the support image using a feature
extractor to the query image. To achieve it, we propose an end-to-end
Bayesian learning framework for few-shot learning, which utilizes the
information from both the support and query image. The features ex-
tracted from the support (prior) and query image (posterior) are mod-
eled as a multivariate Gaussian Mixture Model (GMM) using an auto-
encoder coupled with a shallow convolutional neural network. Afterward,
the support and query prototypes are sampled from the learned GMM
distribution and fused with the extracted query features to estimate the
final segmentation map. The joint optimization of the feature maps and
the GMM parameters results in rich feature extraction and robust dis-
tribution estimation of the input samples. It also alleviates the network
from finding the local optima, strengthening the overall stability of the
network. The proposed technique is extensively validated on two pub-
licly available wireless capsule endoscopy datasets, KID-1 consisting of
77 images of 9 different abnormalities & KID-2 consisting of 593 images
of 4 different abnormalities proving the efficacy of our technique. The
code will be released at https://github.com/kevinYitshak/wce

Keywords: Few-shot · Segmentation · Gaussian Mixture Models · Wire-
less Capsule Endoscopy.

1 Introduction

Assessment of gastrointestinal (GI) tract was tiring and painful for the patients
until the introduction of wireless capsule endoscopy (WCE) by Iddan et al. [10].
WCE considerably reduced the difficulty in the visualization of the small bowel
region, where the possibility of the occurrence of various diseases is relatively
high. Patients are required to ingest a WCE capsule for 7-8 hours, resulting in
50,000 frames [1]. Analyzing 50,000 frames per patient for gastroenterologists
can be demanding, which led to many automated approaches.

1.1 Literature Review

Wireless Capsule Endoscopy. Early works such as [6,17] made use of hand-
crafted features like histogram, mean, variance, of different color-spaces, texture
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information, and finally used hidden Markov models, support vector machines
for classification and thresholding techniques for the segmentation task. Regard-
less, manual feature selection does not always produce desirable results. Methods
like [21,11] use deep convolutional neural networks, leading to vast performance
gains for the classification and localization of abnormalities. But for the segmen-
tation task, most of the previous works are solely focused on specific diseases like
bleeding [15,7], ulcer [27,3], or polypoid [13,24,5]. In our prior works [18,22] we
proposed a four-channel U-Net consisting of RGB-alpha color space and patch-
based feature extraction using a convolutional neural network using the standard
training-testing procedure. The main challenges of the previous work predomi-
nantly lack the generalization capability. Also, due to fewer samples per abnor-
mality, the network can lead to over-fitting as the image acquisition and expert
annotations are demanding. To alleviate the challenges faced by the traditional
techniques, few shot techniques gained more attention recently.

Few-shot techniques. In general, prototype learning techniques like [23,25,16],
meta-learning [12,19] and data generation based approaches [29,8] are the most
common few-shot methodologies. Our proposed work closely aligns with two re-
cent works: Zhang et al. [28] and Yang et al. [26]. The key difference compared
to [28] is instead of class-wise distribution estimation, we used image-wise dis-
tribution as medical images can quite vary within the same classes and also
exploited the query image distribution for better translation of latent represen-
tations from support to query image. Compared to [26], end-to-end learning
framework is proposed resulting in better feature extraction further leading to
better distribution estimation and performance.

1.2 Our Contribution

Our contribution consists of three folds: 1) We propose a novel Bayesian network
for a few-shot segmentation task by utilizing the semantics of both the support
and query image. 2) End-end few-shot pipeline is proposed for better feature
extraction and estimation of GMM distribution. 3) Compared to previous works
in WCE segmentation, we provide an extensive validation on two different public
WCE datasets, consisting a total of 11 abnormalities.

2 Proposed Method

2.1 Problem Formulation

Let’s consider a dataset D(X,Y ) consisting of C classes, with each class con-
taining images X and its corresponding masks Y . In few-shot paradigm, D is
separated into two non-overlapping sets namely, support set S = {(xsi , ysi )}

C,K
i ⊂

X,Y of K randomly sampled images and masks of class C and query set Q =
{(xqi , y

q
i )}

C,N
i ⊂ X,Y of other N images and masks of the same class C; yqi is not

used during the training phase. Distinctly, the data D(X,Y ) from classes C seen
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Fig. 1. [Color online ] Proposed network consists of two branch weight sharing feature
extractor fθ one for support & other for query image(s). Foreground support features
fθ(x

s
+) are spatially partitioned using the support mask ys. Further spatially activated

query regions using the sampled latent representations from the estimated GMM are
passed through the decoder block resulting in the final segmentation map ỹq.

during the training phase is not seen during the test phase, meaning training
and test sample classes are mutually exclusive. Once, the network has learned,
its parameters are fixed and not optimized further during the testing phase.

Main information required to predict the segmentation mask (ỹq) of the
proposed technique is the latent features sampled from the gaussian mixtures of
both, the support and the query distributions. The final prediction for a query
image (xq) is given as:

ỹq = {p(fθ(xq), zq, zs|xq, S)} (1)

where zq, zs are the sampled latent features from query and support gaussian
mixtures, fθ(x

q) is the extracted query features from a feature extractor fθ and
p(.) is the probability of a pixel being the foreground.

2.2 Architecture Description

We have used the two-branch shared weight network (with trainable parameters
θ) to extract the support fθ(x

s) and query fθ(x
q) features. The support fea-

tures fθ(x
s) are spatially partitioned into foreground features fθ(x

s
+) with the

help of support mask ys. Upon obtaining the features, fθ(x
s
+) and fθ(x

q) are
clustered by assigning soft probabilities to each feature map by modeling it as a
gaussian mixture model denoted as gs+ and gq with K gaussian distributions. An
auto-encoder with a shallow CNN is employed to estimate the GMM parameters
κ, µ,Σ to simultaneously optimize both the auto-encoder (with trainable param-
eters φs, φq) and also the mixture model providing an end-to-end training [30],
unlike Expectation-Maximization (EM) algorithm.
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The latent representations sampled from gs+ are given as zs. But it is not
straightforward in the case of gq because the sampled latent features might not
be of our interest ie., it can either belong to the foreground or the background
representation spatially. To learn the foreground query features, we consider
query features GMM gq as a posterior and the support features GMM gs+ as a
prior. During the training phase, we bring gq closer to gs+ by the minimizing the
KL-Divergence DKL and make sure the sampled latent representations from gq

belongs to gs+. Our task lies in two-fold: 1) Estimation of posterior gq and prior
gs+ distribution and 2) How to make use of the estimated distribution to predict
the query mask (yq) as given in Section 2.3 and 2.4.

2.3 Estimation of Distribution

The extracted features fθ(x
s) and fθ(x

q) are passed through an auto-encoder to
perform dimensionality reduction resulting in lower dimension features. In addi-
tion, the error between the reconstructed features are also utilized for GMM pa-
rameter estimation [30]. For example, let’s consider the support features fθ(x

s),

fsl = E(fθ(x
s);φse), f̃θ(x

s) = D(fsl ;φsd), fsr = H(fθ(x
s), f̃θ(x

s)). (2)

where fsl is the dimensionality reduced feature and f̃θ(x
s) is the reconstructed

feature of fθ(x
s). E(.), D(.) denotes encoder and decoder functions of the auto-

encoder network. H(.) denotes reconstruction error functions fsr , which can be
multi-dimensional. In our case, cosine similarity (Sc) and euclidean distance (Ed)
functions are considered to measure the error features. Finally, ζs is passed to
the estimation network for calculating the GMM parameters Fig. 2a.

fsr = [Sc(fθ(xs), f̃θ(xs)), Ed(fθ(xs), f̃θ(xs))], ζs = [fsl , f
s
r ]. (3)

Modelling a Single Image as Mixture of Gaussian’s: Given, the low
dimensional features of the support image ζs ∈ Rd×W×H the mixture probability
is calculated as follows,

Ps = S(ζs), λ̂ = softmax(Ps). (4)

where S denotes a shallow convolutional neural network with trainable parameter

(φss) producing an output Ps. λ̂ ∈ RK×W×H denotes the soft-mixture probability
prediction and K is the number of gaussian distributions in a GMM. Using ζs

and λ̂, the parameters are calculated as given below. Note, N = W ×H.

κsk =

K∑
k=1

N∑
i=1

λ̂ik
N
,µsk =

∑K
k=1

∑N
i=1 λ̂ikζ

s
i∑K

k=1

∑N
i=1 λ̂ik

, Σs
k =

∑K
k=1

∑N
i=1 λ̂ik(ζsi − µsk)(ζsi − µsk)T∑K

k=1

∑N
i=1 λ̂ik

.

The mixture of gaussian’s is defined for the support features as,

gs+(ζs|φss) =

K∑
k=1

κskp(ζ
s|k, µsk, Σs

k). (5)

p(ζs|k, µsk, Σs
k) =

1

(2π)d|Σk|
1
2

exp[−1/2(ζs − µsk)TΣ−1
k (ζs − µsk)]. (6)
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Fig. 2. [Color online ] (a) Gaussian Mixture Model comprising of the encoder E(φe),
decoder D(φd) and a shallow convolutional network S(φs), (b) Spatial activation and
decoder block.

In a similar fashion, the same set of variables of query features is also estimated
κqk, µ

q
k and Σq

k. Further, gq(ζq|φqs) =
∑K
k=1 κ

q
kp(ζ

q|k, µqk, Σ
q
k) is calculated. The

parameters of the GMM are constrained such that, κs, κq ≥ 0,
∑K
k=1(κsk, κ

q
k) = 1

and Σs, Σq are positive-definite matrix. Note that, (κsk, κ
q
k) ∈ R1, (µsk, µ

q
k) ∈

Rd, (Σs
k, Σ

q
k) ∈ Rd×d. The log-likelihood of the modelled gaussian mixture using

the estimation network (φss, φ
q
s) and the objective function of the auto-encoder

(Θs = (φse, φ
s
d), Θ

q = (φqe, φ
q
d)) for support and query features are given as,

Ls(φss) = −log
K∑
k=1

κskp(ζ
s|k, µsk, Σs

k), Lq(φqs) = −log
K∑
k=1

κqkp(ζ
q|k, µqk, Σ

q
k).

Lb(φ
s
s, φ

q
s) = log

K∑
k=1

κskp(z
q|k, µsk, Σs

k)−DKL(gq||gs+). (7)

First term in Eq. 7 constraints the sampled query representations belonging to
the foreground region and second term brings the posterior distribution gq closer
to the prior gs+ by minimising the KL divergence. Total objective function for
the GMM estimation is given by,

LGMM = Js(Θs) + Jq(Θq)− λ1Lb(φss, φqs) + λ2{Ls(φss) + Lq(φqs)}. (8)

where Js(Θs) = L2(fθ(x
s), f̃θ(x

s)) and Jq(Θq) = fθ(x
q), f̃θ(x

q). λ1 and λ2 being
the hyper-parameters set to 1e− 2 and 1e− 4 based on experimentation.

2.4 Output Prediction of Query Image

The latent representations (zq, zs) ∈ Rd×1×1 are sampled from the estimated
support gs+ and query distribution gq and interpolated to the same spatial
resolution of fθ(x

q). In-order to spatially activate the interest regions in the
query features, cosine similarity between [zq, fθ(x

q)] and [zs, fθ(x
q)] are cal-

culated as shown in Fig. 3 and concatenated with the extracted query fea-
tures fθ(x

q). Finally, it is passed through a decoder block Fig. 2b contain-
ing Atrous Spatial Pyramid Pooling (ASPP) and residual block resulting in
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Fig. 3. [Color online ] Spatially activated regions of the query image by the sampled
latent representation zs and zq. Green overlay on the query image indicates the final
prediction.
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Fig. 4. [Color online ] Overlaid segmented results. Green indicates prediction and
Red indicates ground-truth.

the final segmentation output ỹq. The objective function between ỹq and yq is
Lỹq = BCE(yq, ỹq)+IOU(yq, ỹq). The proposed network is optimized by simulta-
neously minimizing 1) the GMM estimation (LGMM ) and 2) Segmentation (Lỹq )
objective function resulting in end-to-end training, given as L = Lỹq + LGMM .

3 Experiments

3.1 Datasets

The proposed technique is validated on two publicly available datasets named
KID-1 [9] and KID-2 [14]. KID-1 consists a total of 77 images containing 9
abnormalities: angioectasias (27), aphthae (5), lymphangiectasia (9), polypoid
(6), bleeding (5), chylous (8), stenosis (6), ulcer (9) and, villous oedemas (2)
[not considered due to less number of images]. KID-2 consists of 593 images
containing four abnormalities: vascular (303), inflammatory (227), polypoid (44)
and ampulla-of-vater (19). Polypoid of KID-1 & KID-2 are combined together
and considered as KID-1. The images from both the datasets are of spatial
dimension 360 × 360 and pixel-wise annotations are used as ground-truth for
the few-shot segmentation task. The eight abnormalities in KID-1 are divided
into four groups, each group containing two abnormalities. Out of four groups,
three groups are used for training and the other one group is used for validation.
Abnormalities of KID-2 are completely used for validation.
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Table 1. Performance metrics of 6-way 1-shot setting for KID-1 and KID-2 of the
proposed technique.

Datasets Group Abnormalities IOU Dice Sensitivity Specificity Accuracy

KID-1

Group 0
Angioectasia 0.2791 0.3868 0.7867 0.9096 0.907

Apathe 0.1652 0.2358 0.3446 0.9411 0.8922

Group 1
Lymphangiectasia 0.5495 0.7061 0.9001 0.9798 0.9743

Polypoid 0.1627 0.2309 0.2151 0.9635 0.8223

Group 2
Bleeding 0.3269 0.4767 0.6210 0.7858 0.7478
Chylous 0.6602 0.7899 0.8130 0.9697 0.942

Group 3
Stenosis 0.3198 0.4583 0.4133 0.8792 0.7597

Ulcer 0.4235 0.5322 0.5753 0.9673 0.9435
Mean 0.3608 0.4770 0.5836 0.9245 0.8736

KID-2

Group 0 Ampulla-of-vater 0.4593 0.5917 0.8016 0.8997 0.8941
Group 1 Inflammatory 0.2260 0.3222 0.4673 0.9456 0.8969
Group 2 Vascular 0.1065 0.1653 0.4290 0.9317 0.9088

Mean 0.2639 0.3597 0.5659 0.9256 0.8999

3.2 Implementation Details

The support and query features are obtained using the DeepLab Resnet-50 [4]
architecture, pretrained on Imagenet [20]. The proposed model is trained with
four pairs of support and query images per batch by optimizing the final objec-
tive function L, using Adam optimizer with a learning rate of 3e−4. During the
training phase, the learning rate is reduced by using cosine decay. The model
is trained for 200 epochs with an early stopping, based on the validation dice
score with a tolerance of 50 epochs. Due to a fewer number of training images,
data augmentation is performed using a library called albumentation [2]. The
abnormality classes are randomly chosen and the support-query images from
the chosen class are also randomly sampled during the training step. Based on
experimentation, three multivariate gaussian distributions (K = 3) per GMM of
dimension (d = 64) gave desirable results. For k-shot setting, the GMM param-
eters for k support images are estimated as per section 2.3 and averaged over
the k support images, resulting in the final gs+.

3.3 Results

Performance of the proposed technique is evaluated by calculating the standard
metrics such as IOU, dice, sensitivity, specificity, and accuracy as given in Table
1. The few-shot paradigm is comparatively new and to our best of our knowledge
there is no few-shot segmentation of Wireless Capsule Images. For comparison
of the proposed technique we implement a recent few-shot technique FPMMs
and it’s variant FRPMMs [26] and compare our proposed method as given in
Table 2. Our technique achieves an increase of 7.25% for 1-shot and 4.86% for
5-shot in average dice score compared to [26]. It also achieves superior perfor-
mance for seven abnormalities proving the efficacy of the proposed technique.
Moreover, the performance of our proposed 1-shot technique is performing bet-
ter than the 5-shot of [26]. Comparison of k-shot setting is given in Table 3.2. In
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Table 2. Comparison of 6-way 1-shot average dice score for KID-1 and KID-2 dataset
abnormality wise with other few-shot techniques.

Datasets
Abnormalities

Methods
FPMM FRPMM VGMM (ours)

KID-1

Angioectasia 0.3310 0.3596 0.3868
Apathe 0.3893 0.1285 0.2358

Lymphangiectasia 0.2600 0.6360 0.7061
Polypoid 0.2177 0.4239 0.2309
Bleeding 0.5393 0.5945 0.4767
Chylous 0.6163 0.5112 0.7899
Stenosis 0.3981 0.2626 0.4583

Ulcer 0.4842 0.3651 0.5322
Mean 0.4044 0.4101 0.4770

KID-2

Ampulla-of-vater 0.4358 0.3771 0.5917
Inflammatory 0.2552 0.2968 0.3222

Vascular 0.1738 0.1709 0.1653
Mean 0.2882 0.2816 0.3597

Table 3. Comparison of average dice score of 6-way 1-shot and 6-way 5-shot settings.

Datasets k-shot FPMMs FRPMMs VGMM(ours)

KID-1
1-shot 0.4044 0.4101 0.4770
5-shot 0.4069 0.4255 0.4669

KID-2
1-shot 0.2882 0.2816 0.3597
5-shot 0.2941 0.3073 0.3631

contrary, performance gain of the proposed method between 1-shot and 5-shot
is quite negligible, which can considered as a task for future works. The final
segmentation results of our proposed technique is given in Fig 4.

4 Conclusion

Due to very few data samples, traditional semantic segmentation of WCE can
easily lead to over-fitting, and the generalization capability of the network is
greatly compromised. In order to overcome these issues, we have proposed a
few-shot based network and to the best of our knowledge, there are no previous
works related to few-shot semantic segmentation of WCE images. Our work
is extensively validated on two public datasets, KID-1 and KID-2 containing 11
abnormalities in total achieving a 7.25% for 1-shot and 4.86% for 5-shot, increase
in average dice and also achieves better performance for 7 abnormalities, thus
proving the generalization capability and efficacy of the proposed technique.
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Table 4. Standard performance metrics of 6-way 5-shot of the proposed technique on
KID-1 dataset.

Abnormality IOU Dice Sensitivity Specificity Accuracy

Angio 0.2804 0.3887 0.7866 0.909 0.9064

Apathe 0.1628 0.2319 0.3414 0.9415 0.892

Lymphangiectasia 0.5435 0.7025 0.9081 0.9786 0.9736

polypoid 0.1674 0.2379 0.2189 0.9637 0.8224

Bleeding 0.3289 0.4785 0.6264 0.7824 0.7476

Chylous 0.6593 0.7892 0.8125 0.9697 0.9418

Stenosis 0.3192 0.4574 0.4121 0.8797 0.7598

Ulcer 0.3550 0.4498 0.4942 0.9663 0.9451

Mean 0.3520 0.4669 0.5750 0.9238 0.8735

Table 5. Standard performance metrics of 6-way 1-shot of the proposed technique on
KID-2 dataset.

Abnormality IOU Dice Sensitivity Specificity Accuracy

Ampulla 0.4593 0.5917 0.8016 0.8997 0.8941

Inflammatory 0.2260 0.3222 0.4673 0.9456 0.8969

Vascular 0.1065 0.1653 0.4290 0.9317 0.9088

Mean 0.2639 0.3597 0.5659 0.9256 0.8999

Table 6. Standard performance metrics of 6-way 5-shot of the proposed technique on
KID-2 dataset.

Abnormality IOU Dice Sensitivity Specificity Accuracy

Ampulla 0.4646 0.5992 0.8189 0.8993 0.8952

Inflammatory 0.2275 0.324 0.4701 0.9453 0.8967

Vascular 0.1075 0.1662 0.4290 0.9138 0.9089

Mean 0.2665 0.3631 0.5726 0.9194 0.9002
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